Skip to content

chronulus.prediction

Prediction

A class representing the output of a prediction request

Parameters:

Name Type Description Default
_id str

Unique identifier for the prediction.

required

Attributes:

Name Type Description
_id str

Unique identifier for the prediction.

Source code in src/chronulus/prediction.py
class Prediction:
    """
    A class representing the output of a prediction request

    Parameters
    ----------
    _id : str
        Unique identifier for the prediction.

    Attributes
    ----------
    _id : str
        Unique identifier for the prediction.

    """

    def __init__(self, _id: str):
        self._id = _id

    @property
    def id(self) -> str:
        """Get the unique identifier for the prediction"""
        return self._id

id property

Get the unique identifier for the prediction

Forecast

Bases: Prediction

A class representing the output of a prediction request, containing both numerical results and explanatory text.

This class encapsulates the prediction results returned from the chronulus API, including a unique identifier, descriptive text, and the numerical predictions in a pandas DataFrame format.

Parameters:

Name Type Description Default
_id str

Unique identifier for the prediction.

required
text str

Descriptive text or notes explaining the prediction results.

required
data dict

JSON-Split formatted dictionary containing the prediction results.

required

Attributes:

Name Type Description
_id str

Unique identifier for the prediction.

_text str

Explanatory text describing the prediction results.

_data dict

JSON-Split formatted dictionary containing the prediction results.

Source code in src/chronulus/prediction.py
class Forecast(Prediction):
    """
    A class representing the output of a prediction request, containing both numerical results and explanatory text.

    This class encapsulates the prediction results returned from the chronulus API,
    including a unique identifier, descriptive text, and the numerical predictions in
    a pandas DataFrame format.

    Parameters
    ----------
    _id : str
        Unique identifier for the prediction.
    text : str
        Descriptive text or notes explaining the prediction results.
    data : dict
        JSON-Split formatted dictionary containing the prediction results.

    Attributes
    ----------
    _id : str
        Unique identifier for the prediction.
    _text : str
        Explanatory text describing the prediction results.
    _data : dict
        JSON-Split formatted dictionary containing the prediction results.

    """

    def __init__(self, _id: str, text: str, data: dict):
        super().__init__(_id)
        self._text = text
        self._data = data

    @property
    def data(self) -> dict:
        """Get the forecast data after the transformation defined by this forecast"""
        return self._transform_data(self._data)

    @property
    def text(self) -> str:
        """Get the forecast explanation after the transformation defined by this forecast"""
        return self._transform_text(self._text)

    def _transform_data(self, data: dict) -> dict:
        """Hook for transforming the forecast data"""
        return data

    def _transform_text(self, text: str) -> str:
        """Hook for transforming the forecast text"""
        return text

    def to_json(self, orient='columns'):
        """
        Convert the forecast data to JSON format with specified orientation.

        Parameters
        ----------
        orient : str, optional
            Data orientation for the JSON output. Options are:

            - 'split': Original JSON-split format
            - 'rows': List of dictionaries, each representing a row
            - 'columns': Dictionary of lists, each representing a column
            Default is 'columns'.

        Returns
        -------
        dict or list
            Forecast data in the specified JSON format:

            - For 'split': Original JSON-split dictionary
            - For 'rows': List of row dictionaries
            - For 'columns': Dictionary of column arrays

        Examples
        --------
        >>> # Get data in columns format
        >>> json_cols = forecast.to_json(orient='columns')
        >>> # Get data in rows format
        >>> json_rows = forecast.to_json(orient='rows')
        """

        if orient == 'split':
            return self.data

        elif orient == 'rows':
            columns = self.data.get('columns')
            rows = list()
            for row in self.data.get('data'):
                _row = {columns[j]: val for j, val in enumerate(row)}
                rows.append(_row)
            return rows

        else:
            col_names = self.data.get('columns')
            columns = {k: list() for k in col_names}

            for row in self.data.get('data'):
                for j, val in enumerate(row):
                    columns[col_names[j]].append(val)

            return columns

    def to_pandas(self):
        """
        Convert the forecast data to a pandas DataFrame.

        The first column is automatically set as the index of the resulting DataFrame.
        Typically, this is a timestamp or date column.

        Returns
        -------
        pandas.DataFrame
            DataFrame containing the forecast data with the first column as index.

        Raises
        ------
        ImportError
            If pandas is not installed in the environment.

        Examples
        --------
        >>> df = forecast.to_pandas()
        >>> print(df.head())
                   y_hat
        date
        2025-01-01   .12345
        2025-01-02   .67890
        """
        if not PANDAS_AVAILABLE:

            message = """pandas is not installed but his method requires pandas. Please install pandas using `pip install pandas` and then try again."""
            raise ImportError(message)

        else:
            json_str = json.dumps(self.data)
            df = pd.read_json(StringIO(json_str), orient='split')
            return df.set_index(self.data.get('columns')[0], drop=True)

data property

Get the forecast data after the transformation defined by this forecast

text property

Get the forecast explanation after the transformation defined by this forecast

to_json(orient='columns')

Convert the forecast data to JSON format with specified orientation.

Parameters:

Name Type Description Default
orient str

Data orientation for the JSON output. Options are:

  • 'split': Original JSON-split format
  • 'rows': List of dictionaries, each representing a row
  • 'columns': Dictionary of lists, each representing a column Default is 'columns'.
'columns'

Returns:

Type Description
dict or list

Forecast data in the specified JSON format:

  • For 'split': Original JSON-split dictionary
  • For 'rows': List of row dictionaries
  • For 'columns': Dictionary of column arrays

Examples:

>>> # Get data in columns format
>>> json_cols = forecast.to_json(orient='columns')
>>> # Get data in rows format
>>> json_rows = forecast.to_json(orient='rows')
Source code in src/chronulus/prediction.py
def to_json(self, orient='columns'):
    """
    Convert the forecast data to JSON format with specified orientation.

    Parameters
    ----------
    orient : str, optional
        Data orientation for the JSON output. Options are:

        - 'split': Original JSON-split format
        - 'rows': List of dictionaries, each representing a row
        - 'columns': Dictionary of lists, each representing a column
        Default is 'columns'.

    Returns
    -------
    dict or list
        Forecast data in the specified JSON format:

        - For 'split': Original JSON-split dictionary
        - For 'rows': List of row dictionaries
        - For 'columns': Dictionary of column arrays

    Examples
    --------
    >>> # Get data in columns format
    >>> json_cols = forecast.to_json(orient='columns')
    >>> # Get data in rows format
    >>> json_rows = forecast.to_json(orient='rows')
    """

    if orient == 'split':
        return self.data

    elif orient == 'rows':
        columns = self.data.get('columns')
        rows = list()
        for row in self.data.get('data'):
            _row = {columns[j]: val for j, val in enumerate(row)}
            rows.append(_row)
        return rows

    else:
        col_names = self.data.get('columns')
        columns = {k: list() for k in col_names}

        for row in self.data.get('data'):
            for j, val in enumerate(row):
                columns[col_names[j]].append(val)

        return columns

to_pandas()

Convert the forecast data to a pandas DataFrame.

The first column is automatically set as the index of the resulting DataFrame. Typically, this is a timestamp or date column.

Returns:

Type Description
DataFrame

DataFrame containing the forecast data with the first column as index.

Raises:

Type Description
ImportError

If pandas is not installed in the environment.

Examples:

>>> df = forecast.to_pandas()
>>> print(df.head())
           y_hat
date
2025-01-01   .12345
2025-01-02   .67890
Source code in src/chronulus/prediction.py
def to_pandas(self):
    """
    Convert the forecast data to a pandas DataFrame.

    The first column is automatically set as the index of the resulting DataFrame.
    Typically, this is a timestamp or date column.

    Returns
    -------
    pandas.DataFrame
        DataFrame containing the forecast data with the first column as index.

    Raises
    ------
    ImportError
        If pandas is not installed in the environment.

    Examples
    --------
    >>> df = forecast.to_pandas()
    >>> print(df.head())
               y_hat
    date
    2025-01-01   .12345
    2025-01-02   .67890
    """
    if not PANDAS_AVAILABLE:

        message = """pandas is not installed but his method requires pandas. Please install pandas using `pip install pandas` and then try again."""
        raise ImportError(message)

    else:
        json_str = json.dumps(self.data)
        df = pd.read_json(StringIO(json_str), orient='split')
        return df.set_index(self.data.get('columns')[0], drop=True)

NormalizedForecast

Bases: Forecast

A class representing the output of a NormalizedForecast prediction request, containing both numerical results and explanatory text.

This class provides methods for operating on normalized forecast data.

Parameters:

Name Type Description Default
_id str

Unique identifier for the prediction.

required
text str

Descriptive text or notes explaining the prediction results.

required
data dict

JSON-Split formatted dictionary containing the prediction results.

required
y_min float

The minimum value of the source scale.

0.0
y_max float

The maximum value of the source scale

1.0
Source code in src/chronulus/prediction.py
class NormalizedForecast(Forecast):
    """
    A class representing the output of a NormalizedForecast prediction request, containing both numerical results and explanatory text.

    This class provides methods for operating on normalized forecast data.

    Parameters
    ----------
    _id : str
        Unique identifier for the prediction.
    text : str
        Descriptive text or notes explaining the prediction results.
    data : dict
        JSON-Split formatted dictionary containing the prediction results.
    y_min : float
        The minimum value of the source scale.
    y_max : float
        The maximum value of the source scale
    """

    def __init__(self, _id: str, text: str, data: dict, y_min: float = 0.0, y_max: float = 1.0):
        super().__init__(_id, text, data)
        self.y_min = y_min
        self.y_max = y_max

    def to_rescaled_forecast(self, y_min: float = 0.0, y_max: float = 1.0, invert_scale: bool = False):
        """
        Create a RescaledForecast instance from  NormalizedForecast object.

        This static method allows conversion from a generic Forecast to a RescaledForecast,
        applying the specified scaling parameters.

        Parameters
        ----------
        y_min : float, default 0.0
            The minimum value of the target scale.
        y_max : float, default 1.0
            The maximum value of the target scale.
        invert_scale : bool, default False
            Whether to invert the scale before rescaling.

        Returns
        -------
        RescaledForecast
            A new RescaledForecast instance containing the rescaled data.
        """
        return RescaledForecast(
            _id=self.id,
            data=self.data,
            text=self.text,
            y_min=y_min,
            y_max=y_max,
            invert_scale=invert_scale
        )

to_rescaled_forecast(y_min=0.0, y_max=1.0, invert_scale=False)

Create a RescaledForecast instance from NormalizedForecast object.

This static method allows conversion from a generic Forecast to a RescaledForecast, applying the specified scaling parameters.

Parameters:

Name Type Description Default
y_min float

The minimum value of the target scale.

0.0
y_max float

The maximum value of the target scale.

1.0
invert_scale bool

Whether to invert the scale before rescaling.

False

Returns:

Type Description
RescaledForecast

A new RescaledForecast instance containing the rescaled data.

Source code in src/chronulus/prediction.py
def to_rescaled_forecast(self, y_min: float = 0.0, y_max: float = 1.0, invert_scale: bool = False):
    """
    Create a RescaledForecast instance from  NormalizedForecast object.

    This static method allows conversion from a generic Forecast to a RescaledForecast,
    applying the specified scaling parameters.

    Parameters
    ----------
    y_min : float, default 0.0
        The minimum value of the target scale.
    y_max : float, default 1.0
        The maximum value of the target scale.
    invert_scale : bool, default False
        Whether to invert the scale before rescaling.

    Returns
    -------
    RescaledForecast
        A new RescaledForecast instance containing the rescaled data.
    """
    return RescaledForecast(
        _id=self.id,
        data=self.data,
        text=self.text,
        y_min=y_min,
        y_max=y_max,
        invert_scale=invert_scale
    )

RescaledForecast

Bases: Forecast

A class representing a RescaledForecast prediction

This class provides methods for rescaling (denormalizing) a Forecast.

Parameters:

Name Type Description Default
_id str

Unique identifier for the prediction.

required
text str

Descriptive text or notes explaining the prediction results.

required
data dict

JSON-Split formatted dictionary containing the prediction results.

required
y_min float

The minimum value of the source scale.

0.0
y_max float

The maximum value of the source scale

1.0
invert_scale bool

Should we invert the scale before rescaling?

False
Source code in src/chronulus/prediction.py
class RescaledForecast(Forecast):
    """
    A class representing a RescaledForecast prediction

    This class provides methods for rescaling (denormalizing) a Forecast.

    Parameters
    ----------
    _id : str
        Unique identifier for the prediction.
    text : str
        Descriptive text or notes explaining the prediction results.
    data : dict
        JSON-Split formatted dictionary containing the prediction results.
    y_min : float
        The minimum value of the source scale.
    y_max : float
        The maximum value of the source scale
    invert_scale : bool
        Should we invert the scale before rescaling?
    """

    def __init__(self, _id: str, text: str, data: dict, y_min: float = 0.0, y_max: float = 1.0,
                 invert_scale: bool = False):
        super().__init__(_id, text, data)
        self.y_min = y_min
        self.y_max = y_max
        self.invert_scale = invert_scale

    def _transform_data(self, data: dict) -> dict:
        # data should be in split format
        # we should create types for this instead of assuming
        new_data = deepcopy(data)
        json_data = new_data.get("data")
        for i, (ds, y_hat) in enumerate(json_data):
            yhat = 1 - y_hat if self.invert_scale else y_hat
            yhat = yhat * (self.y_max - self.y_min) + self.y_min
            json_data[i][1] = yhat

        new_data['data'] = json_data

        return new_data

    @staticmethod
    def from_forecast(forecast: Forecast, y_min: float = 0.0, y_max: float = 1.0, invert_scale: bool = False):
        """
        Convert the normalized forecast to a rescaled forecast with specified scale parameters.

        This method creates a new RescaledForecast instance using the current forecast's data,
        allowing you to specify the target range and whether to invert the scale.

        Parameters
        ----------
        y_min : float, default 0.0
            The minimum value of the target scale.
        y_max : float, default 1.0
            The maximum value of the target scale.
        invert_scale : bool, default False
            Whether to invert the scale before rescaling.

        Returns
        -------
        RescaledForecast
            A new forecast instance with values rescaled to the specified range.
        """

        return RescaledForecast(
            _id=forecast.id,
            data=forecast.data,
            text=forecast.text,
            y_min=y_min,
            y_max=y_max,
            invert_scale=invert_scale
        )

from_forecast(forecast, y_min=0.0, y_max=1.0, invert_scale=False) staticmethod

Convert the normalized forecast to a rescaled forecast with specified scale parameters.

This method creates a new RescaledForecast instance using the current forecast's data, allowing you to specify the target range and whether to invert the scale.

Parameters:

Name Type Description Default
y_min float

The minimum value of the target scale.

0.0
y_max float

The maximum value of the target scale.

1.0
invert_scale bool

Whether to invert the scale before rescaling.

False

Returns:

Type Description
RescaledForecast

A new forecast instance with values rescaled to the specified range.

Source code in src/chronulus/prediction.py
@staticmethod
def from_forecast(forecast: Forecast, y_min: float = 0.0, y_max: float = 1.0, invert_scale: bool = False):
    """
    Convert the normalized forecast to a rescaled forecast with specified scale parameters.

    This method creates a new RescaledForecast instance using the current forecast's data,
    allowing you to specify the target range and whether to invert the scale.

    Parameters
    ----------
    y_min : float, default 0.0
        The minimum value of the target scale.
    y_max : float, default 1.0
        The maximum value of the target scale.
    invert_scale : bool, default False
        Whether to invert the scale before rescaling.

    Returns
    -------
    RescaledForecast
        A new forecast instance with values rescaled to the specified range.
    """

    return RescaledForecast(
        _id=forecast.id,
        data=forecast.data,
        text=forecast.text,
        y_min=y_min,
        y_max=y_max,
        invert_scale=invert_scale
    )

BetaParams

Bases: BaseModel

Collection of alpha and beta parameters for a Beta distribution.

The intuition for alpha and beta is simple. Consider the batting average of a baseball player. Alpha represents the number of hits the player records over a period of time. Beta represents the number of at-bats without a hit. Together, the batting average of the player over that period of time is alpha / (alpha + beta), which is exactly the mean of the Beta distribution. Also, as the player accumulates more at-bats, we become more and more confident of their true batting average.

Parameters:

Name Type Description Default
alpha float

The shape parameter of successes

required
beta float

The shape parameter of failures

required

Attributes:

Name Type Description
alpha float

The shape parameter of successes

beta float

The shape parameter of failures

Source code in src/chronulus/prediction.py
class BetaParams(BaseModel):
    """Collection of alpha and beta parameters for a Beta distribution.

    The intuition for alpha and beta is simple. Consider the batting average of a baseball player. Alpha represents
    the number of hits the player records over a period of time. Beta represents the number of at-bats without a hit.
    Together, the batting average of the player over that period of time is alpha / (alpha + beta), which is exactly
    the mean of the Beta distribution. Also, as the player accumulates more at-bats, we become more and more confident
    of their true batting average.

    Parameters
    ----------
    alpha : float
        The shape parameter of successes
    beta : float
        The shape parameter of failures


    Attributes
    ----------
    alpha : float
        The shape parameter of successes
    beta : float
        The shape parameter of failures
    """

    alpha: float
    beta: float

ExpertOpinion

Bases: BaseModel

The opinion of an expert agent consulted by BinaryPredictor

Parameters:

Name Type Description Default
prob_a

The probability estimated or implied by complementation

required
question

The reframed question that the agent considered during estimation

required
notes

The text explanation justifying the expert's estimate

required
beta_params BetaParams

The alpha and beta parameters for the Beta distribution over the opinion

required

Attributes:

Name Type Description
prob_a float

The probability estimated or implied by complementation

question str

The reframed question that the agent considered during estimation

notes str

The text explanation justifying the expert's estimate

beta_params BetaParams

The alpha and beta parameters for the Beta distribution over the opinion

Source code in src/chronulus/prediction.py
class ExpertOpinion(BaseModel):
    """The opinion of an expert agent consulted by BinaryPredictor

    Parameters
    ----------
    prob_a: float
        The probability estimated or implied by complementation
    question: str
        The reframed question that the agent considered during estimation
    notes: str
        The text explanation justifying the expert's estimate
    beta_params : BetaParams
        The alpha and beta parameters for the Beta distribution over the opinion


    Attributes
    ----------
    prob_a: float
        The probability estimated or implied by complementation
    question: str
        The reframed question that the agent considered during estimation
    notes: str
        The text explanation justifying the expert's estimate
    beta_params : BetaParams
        The alpha and beta parameters for the Beta distribution over the opinion

    """
    prob_a: float
    question: str
    notes: str
    negative: bool = False
    beta_params: Optional[BetaParams] = None
    _prob_a: Optional[float] = None

    def model_post_init(self, __context: Any) -> None:
        self._prob_a = self.prob_a
        if self.beta_params is not None:
            self.prob_a = self.beta_params.alpha / (self.beta_params.alpha + self.beta_params.beta)

    @property
    def prob(self):
        """Gets the estimated probability and its complement."""
        return self.prob_a, 1 - self.prob_a

    @property
    def text(self):
        """Gets the text representation of the expert opinion"""
        sections = [
            "[Negative]" if self.negative else "[Positive]",
            "Q: " + self.question,
            f"Pred: ({self.prob_a * 100:2.2f}%{'' if self.negative else '*'}, {(1 - self.prob_a) * 100:2.2f}%{'*' if self.negative else ''})",
            "A: " + self.notes,
        ]
        return "\n\n".join(sections)

prob property

Gets the estimated probability and its complement.

text property

Gets the text representation of the expert opinion

BinaryPair

Bases: BaseModel

A pair of ExpertOpinions produced independently by the same expert agent

Each agent consider the question posed by the user from the original perspective as well as its complementary one. Considering both perspectives mitigates framing bias and improves the consistency of the probability estimate.

Parameters:

Name Type Description Default
positive

The expert opinion of expert under the user's original perspective.

required
negative

The expert opinion of expert from the perspective complementary to the user's original perspective.

required
beta_params BetaParams

The alpha and beta parameters for the consensus Beta distribution over both opinions

required

Attributes:

Name Type Description
positive ExpertOpinion

The expert opinion of expert under the user's original perspective.

negative ExpertOpinion

The expert opinion of expert from the perspective complementary to the user's original perspective.

beta_params BetaParams

The alpha and beta parameters for the consensus Beta distribution over both opinions

Source code in src/chronulus/prediction.py
class BinaryPair(BaseModel):
    """A pair of ExpertOpinions produced independently by the same expert agent

    Each agent consider the question posed by the user from the original perspective as well as its complementary one.
    Considering both perspectives mitigates framing bias and improves the consistency of the probability estimate.

    Parameters
    ----------
    positive: ExpertOpinion
        The expert opinion of expert under the user's original perspective.
    negative: ExpertOpinion
        The expert opinion of expert from the perspective complementary to the user's original perspective.
    beta_params : BetaParams
        The alpha and beta parameters for the consensus Beta distribution over both opinions

    Attributes
    ----------
    positive: ExpertOpinion
        The expert opinion of expert under the user's original perspective.
    negative: ExpertOpinion
        The expert opinion of expert from the perspective complementary to the user's original perspective.
    beta_params : BetaParams
        The alpha and beta parameters for the consensus Beta distribution over both opinions

    """
    positive: ExpertOpinion
    negative: ExpertOpinion
    beta_params: Optional[BetaParams] = None

    def model_post_init(self, __context: Any) -> None:
        self.negative.negative = True

    @property
    def prob_a(self):
        """Get the consensus probability of the expert opinion pair."""
        if self.beta_params is None:
            return (self.positive.prob_a + self.negative.prob_a) / 2
        else:
            return self.beta_params.alpha / (self.beta_params.alpha + self.beta_params.beta)

    @property
    def prob(self):
        """Get the consensus probability and its complement over the expert opinion pair."""
        return self.prob_a, 1 - self.prob_a

    @property
    def text(self):
        """Gets the text representation of the pair of expert opinions"""
        return "\n\n".join([self.positive.text, self.negative.text])

prob_a property

Get the consensus probability of the expert opinion pair.

prob property

Get the consensus probability and its complement over the expert opinion pair.

text property

Gets the text representation of the pair of expert opinions

BinaryPrediction

Bases: Prediction

A class representing the output of a prediction request, containing both numerical results and explanatory text.

This class encapsulates the prediction results returned from the chronulus API, including a unique identifier, descriptive text, and the numerical predictions in a pandas DataFrame format.

Parameters:

Name Type Description Default
_id str

Unique identifier for the prediction.

required
opinion_set BinaryPair

A set of opinions provided by the expert

required

Attributes:

Name Type Description
_id str

Unique identifier for the prediction.

Source code in src/chronulus/prediction.py
class BinaryPrediction(Prediction):
    """A class representing the output of a prediction request, containing both numerical results and explanatory text.

    This class encapsulates the prediction results returned from the chronulus API,
    including a unique identifier, descriptive text, and the numerical predictions in
    a pandas DataFrame format.

    Parameters
    ----------
    _id : str
        Unique identifier for the prediction.
    opinion_set : BinaryPair
        A set of opinions provided by the expert

    Attributes
    ----------
    _id : str
        Unique identifier for the prediction.

    """

    def __init__(self, _id: str, opinion_set: BinaryPair):
        super().__init__(_id)
        self._opinion_set = opinion_set

    @property
    def opinion_set(self) -> BinaryPair:
        """Gets the set of opinions provided by the expert."""
        return self._opinion_set

    @property
    def prob_a(self):
        """Get the consensus probability of the expert opinion set."""
        return self.opinion_set.prob_a

    @property
    def prob(self):
        """Get the consensus probability and its complement over the expert opinion set."""
        return self.prob_a, 1 - self.prob_a

    @property
    def text(self) -> str:
        """Get the text representation of the expert opinion set."""
        return self.opinion_set.text

    def to_dict(self):
        """Convert the prediction to a python dict

        Returns
        -------
        dict
            A python dict containing the prediction results.
        """

        return self.opinion_set.model_dump()

opinion_set property

Gets the set of opinions provided by the expert.

prob_a property

Get the consensus probability of the expert opinion set.

prob property

Get the consensus probability and its complement over the expert opinion set.

text property

Get the text representation of the expert opinion set.

to_dict()

Convert the prediction to a python dict

Returns:

Type Description
dict

A python dict containing the prediction results.

Source code in src/chronulus/prediction.py
def to_dict(self):
    """Convert the prediction to a python dict

    Returns
    -------
    dict
        A python dict containing the prediction results.
    """

    return self.opinion_set.model_dump()

BinaryPredictionSet

A collection of BinaryPrediction results from BinaryPredictor

The class provides access to aggregate functions over the collection predictions, including access to the Beta distribution estimated over the underlying predictions.

Parameters:

Name Type Description Default
predictions List[BinaryPrediction]

The list of BinaryPredictions for each expert

required
beta_params BetaParams

The alpha and beta parameters for the Beta distribution

required
Source code in src/chronulus/prediction.py
class BinaryPredictionSet:
    """
    A collection of BinaryPrediction results from BinaryPredictor

    The class provides access to aggregate functions over the collection predictions, including access to the
    Beta distribution estimated over the underlying predictions.

    Parameters
    ----------
    predictions : List[BinaryPrediction]
        The list of BinaryPredictions for each expert
    beta_params : BetaParams
        The alpha and beta parameters for the Beta distribution

    """

    def __init__(self, predictions: List[BinaryPrediction], beta_params: BetaParams):
        self.predictions = predictions
        self.beta_params = beta_params
        self.id_map = {p.id: i for i, p in enumerate(predictions)}

    @property
    def text(self):
        experts = []
        for i, pred in enumerate(self.predictions):
            expert = "\n\n".join([
                f"--- Expert {i + 1} ---",
                pred.text,
            ])
            experts.append(expert)
        return "\n\n".join(experts)

    def __len__(self):
        return len(self.predictions)

    @property
    def prob_a(self):
        alpha, beta = self.beta_params.alpha, self.beta_params.beta
        return alpha / (alpha + beta)

    @property
    def prob(self):
        return self.prob_a, 1 - self.prob_a

    def __getitem__(self, idx: Union[str, int,]):
        if isinstance(idx, str):
            return self.predictions[self.id_map[idx]]
        elif isinstance(idx, int):
            return self.predictions[idx]

    def __str__(self):
        return self.text

    def to_dict(self):
        """Convert the prediction set to a python dict

        Returns
        -------
        dict
            A python dict containing the prediction set results.
        """

        ps_dict = dict(
            predictions=[p.to_dict() for p in self.predictions],
            beta_params=self.beta_params.model_dump(),
            prob_a=self.prob_a,
            prob=self.prob,
        )

        return ps_dict

to_dict()

Convert the prediction set to a python dict

Returns:

Type Description
dict

A python dict containing the prediction set results.

Source code in src/chronulus/prediction.py
def to_dict(self):
    """Convert the prediction set to a python dict

    Returns
    -------
    dict
        A python dict containing the prediction set results.
    """

    ps_dict = dict(
        predictions=[p.to_dict() for p in self.predictions],
        beta_params=self.beta_params.model_dump(),
        prob_a=self.prob_a,
        prob=self.prob,
    )

    return ps_dict