chronulus.prediction
Prediction
A class representing the output of a prediction request
Parameters:
Name | Type | Description | Default |
---|---|---|---|
_id
|
str
|
Unique identifier for the prediction. |
required |
Attributes:
Name | Type | Description |
---|---|---|
_id |
str
|
Unique identifier for the prediction. |
Source code in src/chronulus/prediction.py
id
property
Get the unique identifier for the prediction
Forecast
Bases: Prediction
A class representing the output of a prediction request, containing both numerical results and explanatory text.
This class encapsulates the prediction results returned from the chronulus API, including a unique identifier, descriptive text, and the numerical predictions in a pandas DataFrame format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
_id
|
str
|
Unique identifier for the prediction. |
required |
text
|
str
|
Descriptive text or notes explaining the prediction results. |
required |
data
|
dict
|
JSON-Split formatted dictionary containing the prediction results. |
required |
Attributes:
Name | Type | Description |
---|---|---|
_id |
str
|
Unique identifier for the prediction. |
_text |
str
|
Explanatory text describing the prediction results. |
_data |
dict
|
JSON-Split formatted dictionary containing the prediction results. |
Source code in src/chronulus/prediction.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
|
data
property
Get the forecast data after the transformation defined by this forecast
text
property
Get the forecast explanation after the transformation defined by this forecast
to_json(orient='columns')
Convert the forecast data to JSON format with specified orientation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
orient
|
str
|
Data orientation for the JSON output. Options are:
|
'columns'
|
Returns:
Type | Description |
---|---|
dict or list
|
Forecast data in the specified JSON format:
|
Examples:
>>> # Get data in columns format
>>> json_cols = forecast.to_json(orient='columns')
>>> # Get data in rows format
>>> json_rows = forecast.to_json(orient='rows')
Source code in src/chronulus/prediction.py
to_pandas()
Convert the forecast data to a pandas DataFrame.
The first column is automatically set as the index of the resulting DataFrame. Typically, this is a timestamp or date column.
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame containing the forecast data with the first column as index. |
Raises:
Type | Description |
---|---|
ImportError
|
If pandas is not installed in the environment. |
Examples:
Source code in src/chronulus/prediction.py
NormalizedForecast
Bases: Forecast
A class representing the output of a NormalizedForecast prediction request, containing both numerical results and explanatory text.
This class provides methods for operating on normalized forecast data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
_id
|
str
|
Unique identifier for the prediction. |
required |
text
|
str
|
Descriptive text or notes explaining the prediction results. |
required |
data
|
dict
|
JSON-Split formatted dictionary containing the prediction results. |
required |
y_min
|
float
|
The minimum value of the source scale. |
0.0
|
y_max
|
float
|
The maximum value of the source scale |
1.0
|
Source code in src/chronulus/prediction.py
to_rescaled_forecast(y_min=0.0, y_max=1.0, invert_scale=False)
Create a RescaledForecast instance from NormalizedForecast object.
This static method allows conversion from a generic Forecast to a RescaledForecast, applying the specified scaling parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_min
|
float
|
The minimum value of the target scale. |
0.0
|
y_max
|
float
|
The maximum value of the target scale. |
1.0
|
invert_scale
|
bool
|
Whether to invert the scale before rescaling. |
False
|
Returns:
Type | Description |
---|---|
RescaledForecast
|
A new RescaledForecast instance containing the rescaled data. |
Source code in src/chronulus/prediction.py
RescaledForecast
Bases: Forecast
A class representing a RescaledForecast prediction
This class provides methods for rescaling (denormalizing) a Forecast.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
_id
|
str
|
Unique identifier for the prediction. |
required |
text
|
str
|
Descriptive text or notes explaining the prediction results. |
required |
data
|
dict
|
JSON-Split formatted dictionary containing the prediction results. |
required |
y_min
|
float
|
The minimum value of the source scale. |
0.0
|
y_max
|
float
|
The maximum value of the source scale |
1.0
|
invert_scale
|
bool
|
Should we invert the scale before rescaling? |
False
|
Source code in src/chronulus/prediction.py
from_forecast(forecast, y_min=0.0, y_max=1.0, invert_scale=False)
staticmethod
Convert the normalized forecast to a rescaled forecast with specified scale parameters.
This method creates a new RescaledForecast instance using the current forecast's data, allowing you to specify the target range and whether to invert the scale.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_min
|
float
|
The minimum value of the target scale. |
0.0
|
y_max
|
float
|
The maximum value of the target scale. |
1.0
|
invert_scale
|
bool
|
Whether to invert the scale before rescaling. |
False
|
Returns:
Type | Description |
---|---|
RescaledForecast
|
A new forecast instance with values rescaled to the specified range. |
Source code in src/chronulus/prediction.py
BetaParams
Bases: BaseModel
Collection of alpha and beta parameters for a Beta distribution.
The intuition for alpha and beta is simple. Consider the batting average of a baseball player. Alpha represents the number of hits the player records over a period of time. Beta represents the number of at-bats without a hit. Together, the batting average of the player over that period of time is alpha / (alpha + beta), which is exactly the mean of the Beta distribution. Also, as the player accumulates more at-bats, we become more and more confident of their true batting average.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha
|
float
|
The shape parameter of successes |
required |
beta
|
float
|
The shape parameter of failures |
required |
Attributes:
Name | Type | Description |
---|---|---|
alpha |
float
|
The shape parameter of successes |
beta |
float
|
The shape parameter of failures |
Source code in src/chronulus/prediction.py
ExpertOpinion
Bases: BaseModel
The opinion of an expert agent consulted by BinaryPredictor
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prob_a
|
The probability estimated or implied by complementation |
required | |
question
|
The reframed question that the agent considered during estimation |
required | |
notes
|
The text explanation justifying the expert's estimate |
required | |
beta_params
|
BetaParams
|
The alpha and beta parameters for the Beta distribution over the opinion |
required |
Attributes:
Name | Type | Description |
---|---|---|
prob_a |
float
|
The probability estimated or implied by complementation |
question |
str
|
The reframed question that the agent considered during estimation |
notes |
str
|
The text explanation justifying the expert's estimate |
beta_params |
BetaParams
|
The alpha and beta parameters for the Beta distribution over the opinion |
Source code in src/chronulus/prediction.py
prob
property
Gets the estimated probability and its complement.
text
property
Gets the text representation of the expert opinion
BinaryPair
Bases: BaseModel
A pair of ExpertOpinions produced independently by the same expert agent
Each agent consider the question posed by the user from the original perspective as well as its complementary one. Considering both perspectives mitigates framing bias and improves the consistency of the probability estimate.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
positive
|
The expert opinion of expert under the user's original perspective. |
required | |
negative
|
The expert opinion of expert from the perspective complementary to the user's original perspective. |
required | |
beta_params
|
BetaParams
|
The alpha and beta parameters for the consensus Beta distribution over both opinions |
required |
Attributes:
Name | Type | Description |
---|---|---|
positive |
ExpertOpinion
|
The expert opinion of expert under the user's original perspective. |
negative |
ExpertOpinion
|
The expert opinion of expert from the perspective complementary to the user's original perspective. |
beta_params |
BetaParams
|
The alpha and beta parameters for the consensus Beta distribution over both opinions |
Source code in src/chronulus/prediction.py
prob_a
property
Get the consensus probability of the expert opinion pair.
prob
property
Get the consensus probability and its complement over the expert opinion pair.
text
property
Gets the text representation of the pair of expert opinions
BinaryPrediction
Bases: Prediction
A class representing the output of a prediction request, containing both numerical results and explanatory text.
This class encapsulates the prediction results returned from the chronulus API, including a unique identifier, descriptive text, and the numerical predictions in a pandas DataFrame format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
_id
|
str
|
Unique identifier for the prediction. |
required |
opinion_set
|
BinaryPair
|
A set of opinions provided by the expert |
required |
Attributes:
Name | Type | Description |
---|---|---|
_id |
str
|
Unique identifier for the prediction. |
Source code in src/chronulus/prediction.py
opinion_set
property
Gets the set of opinions provided by the expert.
prob_a
property
Get the consensus probability of the expert opinion set.
prob
property
Get the consensus probability and its complement over the expert opinion set.
text
property
Get the text representation of the expert opinion set.
to_dict()
Convert the prediction to a python dict
Returns:
Type | Description |
---|---|
dict
|
A python dict containing the prediction results. |
BinaryPredictionSet
A collection of BinaryPrediction results from BinaryPredictor
The class provides access to aggregate functions over the collection predictions, including access to the Beta distribution estimated over the underlying predictions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions
|
List[BinaryPrediction]
|
The list of BinaryPredictions for each expert |
required |
beta_params
|
BetaParams
|
The alpha and beta parameters for the Beta distribution |
required |
Source code in src/chronulus/prediction.py
to_dict()
Convert the prediction set to a python dict
Returns:
Type | Description |
---|---|
dict
|
A python dict containing the prediction set results. |